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A B S T R A C T

Metal chalcogenide semiconducting nanoplatelets exhibit a broad absorption spectrum, as well as thickness-
dependent optical and electronic properties. As such, they may be used as building blocks in a variety of op-
toelectronic devices. The direct synthesis of heavy-metal-free ultra-small sized nanoplatelets is still challenging,
due to the inherent limits in existing synthetic approaches. Here, we report an efficient template-assisted cation-
exchange route to synthesize heavy metal free metal chalcogenide nanoplatelets that are optically active in the
near infrared. The SnSe nanoplatelets, whose lateral dimension is 6–10 nm, exhibit a quantum yield of 20%. The
nanoplatelets are applied as light absorbers in a photoelectrochemical (PEC) system for hydrogen generation,
leading to a saturated photocurrent density of 7.4 mA/cm2, which is a record for PEC devices using heavy metal-
free colloidal quantum dots or nanoplatelets under identical measurement conditions. Our results indicate that
quasi-zero-dimensional SnSe nanoplatelets hold great potential as efficient light absorbers for emerging op-
toelectronic technologies.

1. Introduction

Colloidal low-dimensional semiconducting nanocrystals are pro-
mising building blocks for solar technologies, such as solar cells, lu-
minescent solar concentrators and solar-driven hydrogen (H2) genera-
tion [1–8]. In particular, ultrathin two-dimensional (2D) nanocrystals,
having sheet-like structures with few nanometers thickness have been
used to fabricate optoelectronic devices [solar cells and photoelec-
trochemical (PEC) devices] [9–16]. Among various types of nanocrys-
tals, nanoplatelets (NPLs) exhibit strong quantum confinement in one
dimension, with wide absorption spectrum, relatively large absorption
coefficient, high carrier mobility, high surface area and unique thick-
ness-dependent optical and thermal properties [9–16]. Various types of
colloidal NPLs including CdSe, CdSeS, CuInS, PbS, PbSeS, SnSe, SnS,
In2Se3 etc have been recently synthesized through exfoliation method
or other wet-chemical approaches [13–20]. Typically, the lateral di-
mension of NPLs is in the range of several tens of nanometers, up to
several microns [13–20]. The large lateral dimension of NPLs compli-
cates their deposition into mesoporous metal oxide thin films. More

importantly, NPLs with large dimension exhibit narrow bandgap [15],
leading to unfavorable energy levels for efficient charge transfer from
the NPLs to the metal oxide. Until now, these drawbacks have limited
their use in optoelectronic devices.

To date, one of the most efficient methods to tailor the band energy
structure is to synthesize ultra-thin NPLs with thickness less than a few
layers. Although the synthesis of few layers or even one layer NPLs has
been reported [18,21,22], the controlled synthesis of few layer metal
chalcogenide NPLs using a simple approach still remains a great chal-
lenge. Another possible method to tune the band gap is to synthesize
quasi zero-dimensional (0D) NPLs with three-dimensional (3D)
quantum confinement, similar as quantum dots (QDs). However, due to
the lack of available wet-chemistry synthetic approaches, there is still
no report for directly preparing small-sized NPLs (lateral dimension
<10 nm) [13–20]. Recently, a two-step template-assisted cation ex-
change method was used to produce NPLs [15,17]. However, the ob-
tained product contains heavy toxic metal Pb or Hg [15,17]. Up to now,
although large sized NPLs have been realized [15–22], the synthesis of
ultra-small sized quasi- 0D heavy-metal free metal chalcogenide NPLs
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has yet to be reported.
Near infrared (NIR) heavy metal free tin chalcogenides (such as a

narrow band gap SnSe, composed of environmentally friendly and earth
abundant elements) enable a thickness/dimension/chemical composi-
tion-tunable wide absorption spectrum, ranging from ultra-violet (UV)
to NIR, thereby significantly overlapping with the solar spectrum
[18,19,22,23]. Until now however, high efficiency PEC devices based
on NIR nanocrystals are exclusively composed of heavy-metal elements
(e.g. Pb) [1,2]. SnS NPLs have been directly grown on fluorine doped
tin oxide (FTO) substrates through a simple wet-chemical method and
used as light absorber for PEC H2 generation [24]. Due to the larger size
of 2D NPLs (20 nm in thickness and 1.5 μm in lateral dimension), the
obtained saturated photocurrent density (J) of 1.2 mA/cm2 [24] is still
ten times lower than other typical photoanodes using colloidal 0D QDs
[2].

Here, we report an efficient template-assisted cation-exchange route
to synthesize ultra-small quasi-0D metal chalcogenide NPLs which are
optically active in the NIR. The as-obtained NPLs have lateral dimen-
sions less than 10 nm. As proof-of-concept, we then used the NPLs as
photosensitizers for PEC H2 generation. We obtained a saturated J of
˜7.4 mA/cm2 in a SnSe NPLs based PEC device, which is comparable to
the performance of high-efficiency PEC devices based on heavy-metal
nanocrystals. Our results indicate that ultra-small heavy-metal-free
SnSe (or SnSexS1-x) NPLs are a very promising candidate as green
semiconductor building blocks for optoelectronic devices.

2. Experimental

2.1. Synthesis of metal chalcogenide NPLs

CdSe and CdSe1-xSx NPLs were synthesized by using a previously
reported approach [14]. The as-preapred NPLs were dispersed in
hexane for further characterization. Subsequently metal chalcogenide
NPLs were obtained via a cation exchange method using CdSe and
CdSe1-xSx NPLs as template [15,17]. Different metal halide precursors
(GeCl2, SnBr2, PbBr2, InCl3, BiI3 and HgCl2) were used to replace Cd in
the template. Typically, in a 50mL round-bottom flask, the metal pre-
cursor (0.1–1mmol), and oleylamine (OLA, 10mL) were degassed at
100 °C for 10min. The reaction flask was re-stored with nitrogen and
the reaction temperature was raised to 120 °C while stirring for one
hour. One milliliter of the CdSe or CdSe1-xSx NPLs suspension
(0.05 mmol in hexane) was added slowly into the above reaction flask
and the reacton mixture was stabilized at 120 °C for 10min. Subse-
quently, oleic acid was added to the mixture when the temperature of
the mixture decreased to 80 °C. After 20min, the reaction was cooled to
room temperature using cold water. Ethanol was added, then the sus-
pension was centrifuged and the supernatant was removed. The NPLs
were then dispersed in toluene for further characterizations.

2.2. Preparation of NPLs/TiO2 film

NPLs/TiO2 film was prepared by using a Doctoral-Blende approach
[2,15]. A thin TiO2 layer was spin coated on fluorine doped tin oxide
(FTO) glass at 6000 rpm for 30 s by using the commercial solution
Ti‐Nanoxide BL/SC (Solaronix). Subsequently the films were annealed
in air at 500 °C for 30min after drying and cooled down to room
temperature. A blend of active anatase particles (˜20 nm) and larger
anatase particles (up to 450 nm) paste (18 NR-AO, Dyesol) were tape
casted on the FTO glass coated with a TiO2 blocking layer, forming a
mesoporous film. Then the film was annealed in air at 500 °C for
30min. The NPLs were then deposited into TiO2 film by electrophoretic
deposition (EPD). Subsequently, a NPLs based TiO2 film (photoanode)
was dipped in hexadecyltrimethylammoniumbromide (CTAB)/me-
thanol solution (10mg/mL) for 30 s. The photoanode was rinsed with
methanol for 1min. This procedure was repeated three times. Subse-
quently, the photoanode was kept at 150 °C for 20min under vacuum

conditions. Finally, two cycles of ZnS were coated on the photoanode
using a successive ionic layer adsorption and reaction (SILAR).

2.3. Characterization

X-ray diffraction (XRD) analysis was performed on a Philips X’pert
diffractometer using a Cu-Ka radiation source (l= 0.15418 nm).
Transmission electron microscopy (TEM) was performed using a JEOL
2100 F TEM equipped with selected area electron diffraction (SAED)
and energy dispersive X-ray spectroscopy (EDS). X-ray Photoelectron
Spectroscopy (XPS) was performed in a VG Escalab 220i-XL equipped
with a hemispherical analyzer. Inductively coupled plasma optical
emission spectrometry (ICP-OES) (Agilent) was used to measure the
molar ratio of Cd and Sn. Absorption spectra were acquired with a UV-
2600 UV–vis spectrophotometer (Shimadzu). Fluorescence spectra were
acquired with a FLS980 (Edinburgh). The PL lifetimes of the NPLs were
measured using a pulsed laser diode of 440 nm and time-correlated
single photon counting (TCSPC) mode in the FLS980 system. The
quantum yield (QY) of SnSe and SnSSe NPLs was measured using
Rhodamine 6 G as a reference.

2.4. PEC measurements

The PEC performance of the photoelectrodes fabricated using SnSe,
SnSSe, Bi2Se3, CdSe, HgSe and PbSeS was evaluated in a three-electrode
configuration, consisting of a NPLs-TiO2 working electrode, a Pt
counter electrode, and a KCl saturated Ag/AgCl reference electrode.
Then the sample was immersed in the electrolyte (pH=13, 0.25M
Na2S and 0.35M Na2SO3). All potentials were measured with respect to
Ag/AgCl during the PEC test using a Metrohm Autolab (PGSTAT302 N)
and were converted to the RHE scale with the following expression
VRHE = VAg/AgCl + 0.197 + pH×0.059. The photoresponse was
measured using an Oriel LCS-100 solar simulator (AM1.5 G). The light
intensity measured using a power meter was ˜100mW cm−2. The
working area of the photoanode was ˜0.12 cm2. The J as a function of
time was measured at 0.6 V vs. RHE under continuous AM 1.5 G illu-
mination. H2 evolution was measured during the PEC experiment. The
produced H2 gas was detected using a Shimadzu GC-8A gas chroma-
tographer (GC) equipped with a thermal conductivity detector. Argon
was used as carrier gas for GC analysis [2]. Detailed information about
the calculation of the hydrogen generation rate is included in the
Supporting information. Electrochemical impedance spectroscopy (EIS)
of as-prepared SnSe NPLs/ZnS anode in the dark and under illumination
(AM 1.5 G, 100mW/cm2) was performed in FRA potentiostatic mode at
the open circuit potential of 0.2 V vs. RHE and a scanning frequency
from 10 kHz to 10mHz. The EIS data was fitted using the NOVA soft-
ware. The thickness of the anode is 5 μm and the EPD time for SnSe
NPLs deposition was 30min.

3. Results and discussion

3.1. Synthesis and structure of NPLs

A two-step approach was used to synthesize small-sized metal
chalcogenide NPLs [15]. First, we synthesized CdSe and CdSexS1-x NPLs
with average size over ˜20× 60 nm2 and thickness of ˜1.7 nm (Figs. 1a,
d and S1), corresponding to ˜5 monolayers (MLs). Typically, the as-
prepared CdSe and CdSexS1-x NPLs have a zinc blende (ZB) structure as
confirmed by XRD patterns and SAED (Figs. S2–S3), consistent with
previous work [14,15]. In addition, the d spacing of CdSexS1-x NPLs in
lateral dimension is measured to be ˜3.45 Å, which is in between the d
spacing of (111) plane for ZB structure of CdSe (JCPDS: 19-0191) and
CdS (JCPDS: 75-0581) [15]. In the alloyed NPLs, the Se/S ratio with
feeding ratios of Se/S equal to 1:1 is estimated as 1:1 from EDS. To
adequately compare the effect of reaction conditions on the morphol-
ogies of cation exchanged NPLs, all the reactions, except the precursor
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concentration and the reaction temperature, were conducted under
identical reaction conditions, such as precursor injection rate, reaction
time and concentration of the template in hexane.

To investigate the crystalline structure of NPLs after cation exhange
at different reaction conditions, we used Transmission Electron
Microscopy (TEM) and high resolution TEM (HRTEM) (Fig. 1d–i). With
the concentration of 10mM SnBr2 in OLA (the molar ratio of SnBr2/
CdSe is 2), a mixture composed of CdSe NPLs, small and large sized
SnSe NPLs was found (Fig. 1b and e). In contrast, with the concentra-
tion of 100mM SnBr2 in OLA (the molar ratio of SnBr2/CdSe is 20),
only one type of small sized SnSe was found in the product (Fig. 1c and
f). The high molar ratio of SnBr2/CdSe is favorable for the complete
cation exchange reaction. A similar phenomenon was also found and
confirmed by EDS data in the reaction systerm using CdSexS1-x NPLs as
template (Fig. S4). The detailed corelation between the reaction con-
ditions and product is shown in Table S1. Under certain reaction con-
ditions, small-sized SnSe, SnSeS, Bi2Se3, PbSeS, and HgSe were ob-
tained (Figs. 1d–i, and S5–S6), but not for GeSe and In2Se3 NPLs (Fig.

S7a–c). EDS, ICP-OES and XPS confirmed a complete cation exchange
between Cd and Sn in 100mM samples (Fig. S1, 4, 8–10). Based on the
EDS of a single NPL shown in Fig. S8, only the Sn signal was detected,
confirmng complete cation exchange between Cd and Sn (or Bi). As
shown in Fig. S9, high-resolution XPS peaks at 404.5 eV and 411.3 eV
correspond to Cd 3d5/2 and Cd 3d3/2 orbitals, respectively, whereas XPS
peaks at 485.7 eV and 494.2 eV correspond to the Sn3d5/2 and Sn 3d3/2
orbitals, respectively (Fig. S10). XPS analysis identifies the presence of
residual Cd in SnSexS1-x and SnSe samples obtained using 10mM pre-
cursors. No Cd was found in the samples obtained using 100mM pre-
cursors, indicating a complete cation exchange between Cd and Sn,
consistent with EDS data (Fig. S8) and ICP-OES measurement.

The cation exchange on CdSe (or CdSeS) NPLs using various metal
halide precursors induces the formation of different ultra-small NPLs
(Figs. 1g–i and S6.). All NPLs exhibit smaller size (less than 20 nm) than
the starting CdSe or CdSe1-xSx NPLs (Figs. 1d and S1). By rotating the
angle between the sample holder and the e-beam during TEM mea-
surement, the NPLs exhibit angle-dependent morphologies, due to the

Fig. 1. (a–c) Scheme of the NPLs before and after cation exchange using different concentrations of SnBr2 precursors [10mM in (b) and 100mM in (c)]. TEM of CdSe
NPLs (d) and cation exchanged NPLs using SnBr2 as precursor with concentration of 10mM (e) and 100mM (f). High magnification TEM of SnSe (g), SnSeS (h) and
Bi2Se3 NPLs (i). The inset in g and h are the corresponding HRTEM images of NPLs.
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irregular shape of NPLs (Fig. S11). Together with HRTEM of NPLs, TEM
imaging confirms the 2D structure in as-obtained nanocrystals. The
SnSe, SnSeS, Bi2Se3, and PbSeS NPLs exhibit a broad size distribution
with average lateral dimensions between ˜4–20 nm. HgSe NPLs exhibit
an irregular shape with lateral dimension greater than 20 nm (Fig. S6a).
SAED and XRD indicate the typical cubic phase and alloyed composi-
tion in SnSe1-xSx NPLs (Fig. S5a,c), consistent with the calculated d(200)
spacing of ˜2.98 Å which is in between the d(200) spacing of cubic SnSe
and SnS (Fig. 1h). Similarly, the calculated d spacing of ˜3.04 Å in SnSe
NPLs is consistent with the (011) plane of the orthorhombic structure
(Figs. 1g, Fig. S5c and S12). The CdSe NPLs obtained after cation ex-
change using BiBr3 as precursor exhibit a typical rhombohedral struc-
ture, confirming the formation of Bi2Se3 NPLs (Fig. S5b,d). As reported
in the literature, there is no significant change of the dimensional size of
HgSe NPLs before and after cation exchange conducted at 25 °C for 12 h
using CdSe NPLs as template [17]. In our case, as the reaction tem-
perature is around 120 °C, the strong etching effect explains the for-
mation of small-sized NPLs [15,25]. During the cation exchange pro-
cess, the template NPLs were fragmented due to either the higher
surface energy of their polycrystalline structure or strong reactivity of
the precursors at relatively high reaction temperatures.

3.2. Optical properties of NPLs

After cation exchange the absorption spectra of SnSe and SnSe1-xSx
absorb from 400 to 1000 nm without an obvious first-excitonic ab-
sorption peak (Fig. 2a–b), which is a typical behaviour for SnSe nano-
crystals [23]. The photoluminescence (PL) peak of SnSe NPLs is located
at 842 nm and that of SnSeS is located at 865 nm (Fig. 2b), whih is
largely red-shifted compared to that of CdSe or CdSSe NPLs (Fig. 2a).
The different PL peaks between SnSe and SnSeS NPLs may be due to
their different chemical composition, size and thickness. The QY of
SnSe NPLs in hexane is around 20%, similar to the QY of templated
CdSe and CdSeS NPLs, which is five times higher than that of SnSeS
NPLs. The lower QY in SnSeS NPLs is consistent with its shorter lifetime
(510 ± 10 ns) compared with that of SnSe NPLs (870 ± 10 ns)
(Fig. 2c). The alloyed CdSeS contains many grain boundaries, which are
very active during the cation exchange reaction, inducing more surface
recombination centers in SnSeS NPLs than that in SnSe NPLs [15].
These recombination centers lead to non-radiative decay events in the
SnSeS NPLs, explaining both its low QY and short lifetime. The SnSe
NPLs with high QY, long lifetime and NIR emission window
(700–1000 nm) represent an excellent candidate for deep-tissue bio-
imaging, bio-sensing and optoelectronic devices [1–3,26,27].

In general, SnSe bulk materials have an indirect bandgap around

0.9 eV as reported previously [25]. With the increse of nanocrystal size
from 3 to 10 nm, the bandgap of SnSe nanocrystals decreases from
1.25 eV to 0.9 eV, and confinement effects taper off near 10 nm [25]. In
the present case, if the as-obtained nanocrystals have sizes between
6–10 nm, based on previous work [25], the bandgap should be lower
than 1.25 eV. Surprisingly however, the estimated bandgap based on
the emission band is ˜1.47 and 1.43 eV for SnSe and SnSeS NPLs, re-
spectively. This value should be even lower than that of the real
bandgap in NPLs as the emission band is usually lower than the band
gap of nanocrystals due to the Stokes shift. In fact, for five layered SnSe
platelets (lateral dimension > 1 μs), the bandgap was reported to be
around 1.2–1.4 eV [28]. The wider bandgap suggests that the as-pre-
pared NPLs exhibit quantum confinement mainly in one dimension
(thickness-dependent quantum confinement), as also found in small-
sized PbSe or PbSeS NPLs [15].

The typical emission peak of Bi2Se3 NPLs is in the NIR (˜1200 nm)
(Fig. S12). Compared with the high QY in SnSe NPLs, Bi2Se3 NPLs have
a very low QY of 1% because of surface defects, due to the strong
etching effect by BiBr3/OLA precursors. This etching effect was also
confirmed by the emission spetrum of CdSe NPLs after treatments using
InCl3/OLA, leading to a very broad emisison other than narrow emis-
sion band of original NPLs (Fig. S14).

3.3. PEC performance of NPLs based photoanode

The calculated bandgaps of SnSe NPLs and band energy levels are
presented in Fig. 3. These values are favorable for charge transfer from
NPLs to TiO2, as well as for water reduction (H2/H2O: -0.7 eV vs.
normal hydrogen electrode (NHE)) [29]. This is due to its ultra-small
size which is under quasi-3D confinement, enabling to tune their elec-
tronic states and PL emission. Other metal chalcogenide NPLs also ex-
hibit a favorable band alignment between the semiconductor conduc-
tion band and the energy level for water reduction. Due to the
unfavorable energy levels of the valance band in the PbS and Bi2Se3,
these materials are not suitable for water splitting, but photogenerated
holes in these materials can transfer to hole scavengers (S2−/SO3

2−)
(Fig. 3). As proof-of-concept, we used these quasi-0D ultra-small na-
nocrystals for PEC hydrogen generation. Compared with Cd and Pb
based QDs or NPLs, SnSe and SnSeS are environmentally friendly
without containing toxic elements. In addition, the as-prepared NPLs
exhibit a broad absorption range up to the NIR, which is wider than SnS
and In2Se3 nanocrystals [19,20,24,30].

For the anode preparation, a typical thickness of TiO2 mesoporous
film is around 18 μm, using a doctor-blade approach [15]. The PEC
performance of the NPLs was measured by a three electrode system

Fig. 2. (a) Absorption and PL spectra of parent CdSe and CdSe1-xSx NPLs. (b) Absorption and PL spectra of SnSe and SnSe1-xSx NPLs. The excitation wavelength is
400 nm for all NPLs dispersed in toluene. (c) PL decay curves (dots) and fitting curves (solid lines) for SnSe and SnSe1-xSx NPLs measured at the emission peak in
toluene, shown on a semi-logarithmic scale. The excitation wavelength was set at 450 nm.
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[Metrohm Autolab (PGSTAT302 N)] and demonstrated in Fig. 4a–c. The
PEC device based on bare TiO2 exhibits a saturated current density of
0.3 mA/cm2 as the TiO2 can only absorb sunlight in the range
300–400 nm [32]. A value of saturated J of ˜0.8 mA/cm2 was reported
for pure PbSe NPLs treated with Cd cations at 40 °C [15]. Other than

strong surface oxidation during anode preparation in the system of
PbSeSe NPLs [15], the PEC device based on SnSe NPLs without post-
thermal treatment exhibits a saturated J of ˜2.1mA/cm2 (Fig. 4a).
When illuminating the anode with chopped light, the saturated J in-
creases to ˜2.6mA/cm2 (Fig. 4b), which is more than 2 times higher

Fig. 3. Schematic diagram and approximate band alignment and of NPLs-sensitized photoanodes.

Fig. 4. (a–c) J-V (versus RHE) of NPLs/TiO2-sensitized photoelectrodes in the dark (black curve), under continuous (red curve) and chopped (green curve) illu-
mination (AM 1.5 G, 100mW/cm2). SnSe NPLs before (a) and after (b) post-treatment and SnSeS NPLs. (d) J as a function of time of NPLs/TiO2-sensitised anodes at
0.6 V versus RHE under AM 1.5 G irradiation (100mW/cm2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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than PbSeS NPLs and large SnSe platelet-based PEC devices under
identical measurement conditions (same electrolyte and counter elec-
trode, electrode size, light intensity, etc) [15,24].

Sunlight illumination can induce self-surface annealing, decreasing
the number of recombination centers created during the anode pre-
paration process [31]. In the following, before PEC measurements, all
anodes were annealed at 150 °C for 20min to improve PEC device
performance. Under one sun illumination (100mW/cm2), the anode
based on SnSe NPLs exhibits a saturated J of ˜4mA/cm2 at 0.6 V vs RHE
(Fig. 4c). Similar values of saturated J were also found in the PEC de-
vice based on alloyed SnSeS NPLs (Fig. 4c). The obtained saturated J is
much higher as opposed to values obtained using other NPLs (HgSe,
Bi2Se3, CdSe and CdSeS) based anodes under identical measurement
apparatus and conditions (Fig. S15). Our obtained J value is also much
higher than that of pure PbSeS NPLs or SnSe platelet-based anode
[15,24]. With further optimization of the thickness of TiO2 and the EPD
time, the saturated J reaches ˜7.4mA/cm2 (Fig. 5a). This J is compar-
able to values reported from PEC systems using Cd or Pb based QDs or
NPLs as light absorbers [35–40], such as PbS/CdS NPLs (5mA/cm2)
[15], PbS/CdS/CdS QDs (11mA/cm2) [32], CdSe/CdS QDs (10mA/
cm2) [2], CdS and CdSe QDs-co-sensitised TiO2 (14.9mA/cm2) [33]
and PbS and Mn-CdS QDs-co-sensitised TiO2 (22.1 mA/cm2) [34].
However, these materials (QDs or NPLs) contain hazardous heavy metal
ions. To the best of our knowledge, this is a record J at 0.8 V vs RHE for
heavy-metal-free NIR QDs or NPLs based photoelectrodes for solar-
driven PEC hydrogen generation (Table 1), such as large-sized SnSe

NPLs (˜2.1 mA/cm2) [24], CuInSeS/ZnS QDs (˜5mA/cm2) [35],
CuInSe/CuInS QDs (˜3mA/cm2) [31], and carbon dots sensitized
NiOOH/FeOOH/BiVO4 (5.99 mA/cm2) [36] or carbon dots sensitized
Ti:Fe2O3/graphitic carbon nitride nanosheets (3.38 mA/cm2) [40]. This
value is also comarable with that of PEC devices based on metal oxides,
such as hematite (3.05 mA/cm2) [37] and Cu2O nanowires (10mA/
cm2) [38].

We further measured the stability of anode (at 0.6 V vs RHE),
finding an approximate drop of about 26% of the original current
density after 600 s in the PEC device based on CdSe NPLs (Fig. 4d). This
rapid decrease is probably due to the slow charge separation and
transfer as the large-sized NPLs cannot adsorb effectively on the TiO2

mesoporous structure. A similar behaviour was also found in the SnSeS
based anode. On the other hand, the SnSe-based photoanode exhibits
very good stability: 89% of its initial J was maintained after 600 s il-
lumination. The good stability of the PEC device based on SnSe NPLs is
mainly attributed to its excellent optical properties with respect to its
high QY and long lifetime. In addition, the PEC device based on Bi2Se3
nanocrystals also exhibits very good stability, as 93% of its initial J was
maintained after 600 s illumination. This performance is comparable to
that of the best photoanodes previously reported [32–41]. Further
stability measurements for the optimized anode based on SnSe NPLs
with the preparation parameters (#1) indicate a decrease of J as a
function of illumination time (Fig. 5b) and the J decreases to 4mA/cm2

after 5 h illumination. The reason for the decrease of J is mainly due to
(i) chemical corrosion as the pH value of the electrolyte is 13; (ii) the
photoinduced structure degradation; and (iii) the hole accumulation
induced surface oxidation due to the slow hole transfer rare [32–40].
Further improving the stability of the PEC devices may focus on the
replacement of alkaline electrolyte with neutral solution with the ad-
dition of hole acceptors.

Our work indicates that the Faraday efficiency is ∼80%, using Pt as
counter electrode and Na2S/Na2SO3 as electrolyte (Fig. S16). Based on
the reference curve, we integrated the current density (Fig. 5b), and on
this basis the calculated hydrogen generation rate of the PEC device
based on SnSe NPLs is ˜42mL·cm−2·day−1, which is comparable to the
valures obtained using other materials [31,35,36,40].

In order to further understand the PEC reaction kinetics, the as-
prepared SnSe NPLs/ZnS photoanode was investigated by EIS. Fig. S17
shows the Nyquist plots of the TiO2/SnSe-NPLs/ZnS photoanode-Na2S/
Na2SO3 electrolyte system for the EIS measurements performed in the

Fig. 5. (a) J–V (versus RHE) of SnSe NPLs/TiO2 sensitized photoelectrodes in the dark (black curve) and under continuous (red curve) illumination (AM 1.5 G,
100mW/cm2). The anode was prepared using the following parameters: (#1) the thickness of TiO2 film (18 μm) and the EPD time (0.5 h); (#2) the thickness of TiO2

film (18 μm) and the EPD time (1 h); (#3) the thickness of TiO2 film (12 μm) and the EPD time (1 h). All anodes were post-treated at 150 °C for 30min. (b) J as a
function of time of NPLs/TiO2-sensitised anodes using the parameters #2 at 0.6 V versus RHE under AM 1.5 G irradiation (100mW/cm2). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Saturated J (mA/cm2) in PEC devices based on various type of coloidal heavy-
metal-free nanocrystals. The J was measured under 100mW/cm2 illumination
in the presence of the electrolyte.

Anode J (mA/cm2) Ref.

SnSe sensitized TiO2 7.4 This work
Bi2Se3 sensitized TiO2 1.0 This work
SnSxSe1-x sensitized TiO2 2.6 This work
CuInSeS/ZnS sensitized TiO2 5 [35]
CuInSe/CuInS sensitized TiO2 3 [31]
NiOOH/FeOOH/Carbon quantum dots /BiVO4 5.99 [36]
Carbon dot sensitized Ti:Fe2O3/graphitic carbon

nitride nanosheets
3.38 [40]
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dark and under illumination conditions (AM 1.5 G, 100mW/cm2).
Similar EIS features were found for the sample measured in the dark
and under illumination, which are a semicircle arc at high frequency
and a linear region at low frequency. Because the electronic processes
in the bulk are normally faster than charge transfer processes or dif-
fusion of ions in electrolyte, in our system, the low frequency response
is assigned to the semiconductor-electrolyte charge transfer resistance
(Rct), and the high frequency response is assigned to events occurring in
the semiconductor [42–44]. The spectra were modeled using a simpli-
fied electronic equivalent circuit (Fig. S17a) [42–44]. The circuit series
resistance (RS) is constant about 40–50 ohms for the system in the dark
and under illumination. A smaller high frequency arc for the electrode
under illumination compared to the electrode in the dark was found,
indicating a decrease of Rct from 730 to 590 ohms under illumination
(Fig. S17b). This decreasing Rct is due to the increased conductivity in
the semiconductor afforded by illumination [42].

4. Conclusions and perspectives

In summary, we demonstrated a simple template-assisted cation
exchange approach to synthesize metal chalcogenide NPLs optically
active in the NIR, including SnSe, SnSeS and Bi2Se3 NPLs. The SnSe
NPLs exhibit a lateral dimension of 6–10 nm with a QY of 20% and a
fluorescence lifetime up to 870 ns, showing great potential for appli-
cation in optical and electronic devices, such as solar cells and PEC
hydrogen production. The SnSe NPL-based photoanode exhibits a sa-
turated J of ˜7.4mA/cm2 at 1.0 V vs RHE, which is six times higher than
that of the large sized SnSe platelet and comparable with that of PEC
device using heavy metal PbS/CdS NPLs under identical measurement
conditions. In addition, PEC devices based on SnSe NPLs exhibit good
photostability, observing that J still retained values of about 4mA/cm2

after 5 h illumination. Our results indicate that small-sized SnSe NPLs
are promising as efficient light absorbers for optoelectronic devices.
Future directions may focus on the development of SnSe NPLs with
different thickness and small-sized core/shell structured SnSe/SnS or
SnS/SnSe NPLs for optical and electronic devices.
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