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Transmission electron microscopy (TEM) has been used to investigate Germanium nanocrystals
(Ge-nc) synthesized by implantation of Ge+ ions into SiO2 films grown on (100) Si substrates, fol-
lowed by thermal annealing at 850 �C. High resolution imaging shows that the diameter, heterogene-
ity and depth-distribution of the formed Ge-nc increase continuously with the Ge concentration. It is
evidenced that the biggest Ge-nc form in the sample region where the concentration of implanted
Ge is the highest, resulting in a highly size-selective depth-distribution of Ge-nc. By comparing TEM
observations with the implanted ion distributions, we show that the formation of Ge-nc larger than
1 nm occurs for Ge concentration greater than ∼5×1020 Ge+/cm3 (∼1 at.%) whereas a minimum
local density threshold of ∼4×1021 Ge+/cm3 (∼8 at.%) is required to produce Ge-nc bigger than
6 nm. The fraction of Ge found inside Ge-nc decreases from ∼60% to ∼40% in the heavily ion
implanted sample, due to possible reduction of Ge thermal diffusivity in the highly damaged SiO2

layer. In addition to demonstrate the possible synthesis of Ge-nc in silicon oxide matrices containing
Ge concentration as low as 1 at.%, these results enable to directly connect the geometry and the
density of the formed nanocrystallites with the germanium concentration, for both the optimization
and the control of the Ge-nc synthesis process.
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1. INTRODUCTION
Silicon (Si) and germanium nanocrystals (Ge-nc) embed-
ded in silicon dioxide (SiO2� or germanosilicate glass have
been widely used as efficient light emitters and optical
absorbers for many applications in optical sensing tech-
nology, memory storage, photonics and photovoltaics.1–5

Recently, a more specific attention has been paid to Ge-nc
for developing new integrated optoelectronic devices and
high efficient solar cells,6�7 where both the size and the
crystallinity of the formed nanocrystallites can drastically
affect their performances.
Until now, direct characterizations of Ge-nc embedded

in SiO2 by transmission electron microscopy (TEM)8–12

and atomic force microscopy (AFM)13�14 have revealed
the formation of Ge-nc inside SiO2/Si systems, but few
of them enable to study simultaneously the evolution of
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their size, size-dispersion and spatial distribution as a
function of the fabrication parameters. Also, no direct cor-
relation has been clearly established between the synthesis
of Ge-nc, their morphology and the local concentration
of Ge. These investigations are indispensable for con-
trolling the nature of the formed Ge-nc and tuning their
physical properties, especially for nanocrystallites hav-
ing dimension lower than the germanium Bohr radius.15

Also, the minimum Ge concentration required for pro-
ducing Ge-nc is unknown and needs to be estimated in
order to determine if the nucleation of Ge can occur
in other SiO2-based systems such as Ge-doped silica
glass entering within the fabrication of numbered opti-
cal components. To this end, Ge-nc are produced using
a process based on ion implantation which provides
an excellent control of the Ge density inside the host
matrix compared to other synthesis techniques based on
GeO2 reduction,9 laser ablation,16 magnetron-sputtering
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Figure 1. Typical dark-field images of the samples implanted at 1× 1016 Ge+/cm2 (a), 2× 1016 Ge+/cm2 (b), 4× 1016 Ge+/cm2 (c), 8× 1016

Ge+/cm2 (d). Right, HRTEM image of the SiO2/Si interface (e), with the [011] zone-axis SAED pattern obtained from the Si substrate (f).

deposition,17 chemical vapor deposition,18�19 and molecu-
lar beam epitaxy.5

In this paper, we present a detailed characterization
of Ge-nc thermally synthesized inside SiO2/Si systems
implanted at ion fluencies of 1× 1016, 2× 1016, 4× 1016

and 8×1016 Ge+/cm2. We chose an annealing temperature

Figure 2. Size-distributions of Ge-nc observed by dark-field TEM imaging for samples implanted at 1× 1016 Ge+/cm2 (a), 2× 1016 Ge+/cm2 (b),
4×1016 Ge+/cm2 (c), 8×1016 Ge+/cm2 (d).

of 850 �C, giving a representative description of Ge-nc pro-
duced from an annealing conducted below the Ge melt-
ing point of 938 �C. In such conditions, it was found
that Ge desorption effects are negligible and the formed
Ge nanocrystallites are highly-ordered.20�21 The size, size-
dispersion and depth-distribution of Ge-nc are measured by
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Table I. Average size, size-dispersion and spatial distribution of Ge-nc.

Implantation Starting Implanted layer Average size (nm)
dose (cm−2� depth (nm) thickness (nm) Standard deviation

1×1016 20±5 53±5 D = 3�71, � = 0�93
2×1016 15±3 55±5 D = 4�74, � = 1�33
4×1016 10±2 58±5 D = 6�42, � = 1�46
8×1016 6±2 64±3 D = 6�50, � = 2�68

TEM, which allows us to determine the minimum concen-
tration of implanted Ge needed to activate the nucleation
of Ge-nc, as well as the fraction of implanted Ge partici-
pating in this process. We show that the spatial distribution
of the produced Ge-nc is size-selective and strongly con-
nected with the depth profiles of implanted Ge ions within
SiO2 matrix, as well as the possibility of producing Ge-nc
in systems containing a Ge concentration as low as 1 at.%.

2. EXPERIMENTAL DETAILS
200-nm-thick SiO2 films were produced by dry thermal
oxidation of a (100) Si substrate at 1100 �C. These sam-
ples were implanted with 70-keV 74Ge+ at room tempera-
ture, followed by a thermal annealing at 850 �C (below the
melting point of Ge) for 1 h under an atmosphere of nitro-
gen (N2�. To avoid any accidental contamination of the

Figure 3. SRIM calculated depth-profiles of implanted Ge compared with the depth distribution of the Ge concentration found in Ge-nc, for implan-
tation doses of 1×1016 Ge+/cm2 (a), 2×1016 Ge+/cm2 (b), 4×1016 Ge+/cm2 (c), 8×1016 Ge+/cm2 (d).

annealing ambient, the gas flux is filtered using an addi-
tional nitrogen purifier. To examine the effect of implanta-
tion dose on the microstructure of Ge-nc, different doses
of 1×1016, 2×1016, 4×1016 and 8×1016 cm−2 were set
for the ion implantations.
TEM experiments were carried out on specimens pre-

pared in cross section (oriented along the [011] zone axis
of the Si substrates), using conventional techniques of
mechanical polishing and ion-thinning. The ion thinning
was performed using a Gatan model 691 precision ion
polishing system (PIPS). Selected-area electron diffraction
(SAED), dark field (DF) imaging and high-resolution TEM
(HRTEM) imaging were conducted using a JEOL JEM
2100F TEM operated at 200 kV.

3. RESULTS AND DISCUSSION
Typical DF TEM images are shown in Figures 1(a–d)
for samples implanted at 1× 1016, 2× 1016, 4× 1016 and
8× 1016 Ge+/cm2, respectively. During the acquisition of
DF TEM images, all Si substrates were tilted close to the
[011] zone-axis in order to obtain a better estimation of
the Ge-nc position. These images show clearly the pres-
ence of a SiO2 sublayer containing nanocrystals (bright
spots), whose statistical size distribution is presented for
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each implantation dose in Figures 2(a–d). The starting
depth, the thickness of the SiO2 sublayer containing Ge-nc
and the average size of Ge-nc are summarized in Table I.
These measurements indicate that the starting depth at
which Ge-nc are observed decreases with the implanta-
tion dose, while the thickness of the sublayer containing
Ge-nc increases continuously. The average size of Ge-nc
observed in different samples increases with the implanta-
tion dose: from 3.71 nm in the sample implanted at 1×
1016 Ge+/cm2, to 6.50 nm in the sample implanted at 8×
1016 Ge+/cm2. Such increases of both the Ge-nc sublayer
thickness and the Ge-nc dimensions are consistent with
the reduction of the spacing between implanted Ge ions at
greater implantation doses, which can promote the forma-
tion of Ge aggregates into a more extended sample region.
For the sample implanted at 8× 1016 Ge+/cm2, the aver-
age size of the formed Ge-nc (6.50 nm) is quite similar to
that measured for Ge-nc synthesized at 850 �C (6.33 nm),
800 �C (6.13 nm) and 700 �C (5.95 nm), reported in
Ref. [21].

In Figures 3(a–d), the depth-distributions of Ge found
in Ge-nc (classified in three different groups accord-
ing to their sizes) are compared with the depth pro-
files of implanted Ge determined by SRIM Monte-Carlo
simulations.22 Both the concentration of Ge-nc and the
percentage of Ge that nucleates were reported for each
implantation doses in Table II. In these calculations, we
assumed that the density of 4.43×1022 cm−3 inside Ge-nc
is similar to that of bulk Ge, because the compressive
stress exerted by the surrounding SiO2 on Ge-nc is only
of about 2% at this annealing temperature.21 We took also
into account the surface erosion induced by ion sputter-
ing, estimated for each implantation dose using SRIM cal-
culations, as well as the swelling effects related to the
introduction of Ge.22 For the sample implanted at 8×
1016 Ge+/cm2, these two effects shift ∼25 nm the center
position of the implanted Ge depth-profile to the sample
surface. The thickness of the TEM specimen is mea-
sured to be around 50 nm using electron energy-loss spec-
troscopy. From the recorded TEM images, we measured
Ge-nc concentrations of 2.67× 1018, 1.94× 1018, 1.75×
1018 and 1.63× 1018 cm−3 in the samples implanted at
1×1016, 2×1016, 4×1016 and 8×1016 Ge+/cm2, respec-
tively, indicating that the formation of bigger Ge-nc is
accompanied by an overall reduction of their density inside
the SiO2 layer. The proportion of Ge participating in the
growth of Ge-nc remains almost constant around 60%
for implantation fluences lower than 4× 1016 Ge+/cm2.
This percentage drops to 40% in the sample implanted
at 8× 1016 Ge+/cm2. Such a decrease may result from a
significant reduction of the Ge thermal diffusivity inside
heavily-damaged SiO2 layer, where the occurrence of trap-
ping mechanisms between diffusing Ge and Si dangling
bonds generated during ion bombardment have already
been evoked to explain similar effects observed in fused
silica systems implanted with Ge.23�24

Table II. Concentration of Ge-nc with percentage of implanted Ge that
nucleates.

Implantation Concentration of Synthesis
dose (cm−2� Ge-nc (cm−3) efficiency (%)

1×1016 2.67×1018 63
2×1016 1.94×1018 61
4×1016 1.75×1018 60
8×1016 1.63×1018 43

Typical HRTEM images are shown in Figures 4(a–d)
for each sample. Figure 4(e) shows a typical HRTEM
image of a single-twin structure, and Figure 4(f) is the
HRTEM image of a double-twin structure. Such nanotwins
are observed in most Ge-nc with diameters larger than
5 nm. This suggests that the growth mechanisms involved
in Ge-nc nucleation are related to Ostwald ripening and
coalescence effects, as for Ge-nc synthesized in fused
silica.25

Except for the sample implanted at 1× 1016 Ge+/cm2,
where slight discrepancies are reported due to the small

Figure 4. HRTEM images of Ge-nc produced from Ge implanta-
tion doses of 1 × 1016 Ge+/cm2 (a), 2 × 1016 Ge+/cm2 (b), 4 ×
1016 Ge+/cm2 (c), 8×1016 Ge+/cm2 (d), with typical HRTEM image of
a single-twin structure (e) and a double-twin structure (f).
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size of the formed Ge-nc, two remarkable features are evi-
denced on these figures:
(i) the centering of both the implantation profiles and the
profile of observed Ge-nc at the same depth for each ion
fluence, and
(ii) the highly size-selective depth-distribution of Ge-nc.

The latter is qualitatively similar to that observed for
Si-nc.25 From a careful examination of these data, we
identified three concentration thresholds of implanted
Ge, namely ∼5.0× 1020 at · cm−3 (∼1.0 at.%), ∼1.5×
1021 at · cm−3 (∼3.0 at.%), and ∼4.0× 1021 at · cm−3

(∼8.0 at.%), above which, Ge-nc smaller than 3 nm, Ge-
nc of 3–6 nm and Ge-nc larger than 6 nm are synthe-
sized, respectively. These three indicative values define
the minimum concentration of Ge required for activating
the production of Ge nanocrystallites having these specific
dimensions during an annealing of 1 h at 850 �C. In addi-
tion to quantify the concentration of Ge needed for the
synthesis of these Ge-nc, this suggests that the nucleation
of Ge-nc can occur at this temperature inside other SiO2-
based systems containing weak Ge concentration, such
as Ge-doped silica glass (where the concentration of Ge-
dopant can reach up to 20–30%), which are widely used
in optical telecommunication and optical fibre technology.

4. CONCLUSIONS
In summary, a systematic TEM study of Ge-nc produced
by ion implantation in SiO2/Si systems shows that both
the dimension and the size-dispersion of formed nanoclus-
ters increase continuously with the concentration of Ge
introduced into the samples. The comparison between the
depth-profile of implanted ions and the quantity of Ge
found inside Ge-nc reveals that the biggest Ge-nc are pro-
duced in the sample region where the local concentration
of Ge is the highest. A size-selective depth distribution of
Ge-nc is identified by Ge concentration thresholds defining
the minimum quantity of Ge needed to form nanocrystals
with diameters varying from 1 to 10 nm. We demonstrated
that a heating at 850 �C can promote the synthesis of
Ge nanocrystallites in SiO2-based systems containing a Ge
concentration as low as 1 at.%, which is in the order of
the Ge content inside Ge-doped silica glass employed in
a large variety of optical components, such as optical sen-
sors and fibers. The quantity of implanted Ge participating
into the Ge-nc nucleation was estimated between 60 and
40% in the studied samples, indicating a possible reduc-
tion of the Ge thermal diffusion in heavily-implanted SiO2

layers.
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