Growth of regular-shaped β -Ga₂O₃ nanorods by Ni²⁺-ion-catalyzed chemical vapor deposition

Yuefeng Zhao · Shulian Liu · Yiqian Wang · Feng Shi · Zongjuan Zang

Received: 13 August 2013/Accepted: 24 October 2013/Published online: 22 November 2013 © Springer Science+Business Media New York 2013

Abstract Regular-shaped monoclinic β -Ga₂O₃ nanorods with square cross-sections were successfully synthesized and characterized by Ni²⁺-ion-catalyzed chemical vapor deposition method using CaF₂ as a dispersant. The composition, crystal structure, morphology, and optical property were characterized in detail. X-ray diffraction data indicate that the product was a single monoclinic β -Ga₂O₃ phase with high purity. The regular-shaped nanorods had square cross-sections and an approximate size of 250 nm in diameter and 500–1,000 nm in length. A broad and strong emission band that ranged from 300 to 650 nm was observed with three bands centered at approximately 405 (blue), 467 (dark blue), and 520 nm (green). The growth mechanism of β -Ga₂O₃ nanorods was consistent with the vapor–solid growth mechanism.

Shulian Liu and Yiqian Wang are joined first authors.

Y. Zhao · F. Shi (⊠) · Z. Zang (⊠) College of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China e-mail: sf751106@sina.com.cn

Z. Zang e-mail: zangzongjuan@163.com

S. Liu

Shandong Cadre School of Quality and Technical Supervision, Jinan 250014, People's Republic of China

Y. Wang

The Cultivation Base for State Key Laboratory, Qingdao University, Qingdao 266071, People's Republic of China

1 Introduction

 β -Ga₂O₃ has potential applications as a transparent conducting material in next-generation optoelectronic devices operating from the visible to ultraviolet spectrum because of its unique bulk properties (i.e., chemically and thermally stable compound with a wide band gap of 4.9 eV). In view of the superiority of nanostructures for future nanodevices, considerable efforts have been exerted to synthesize various β -Ga₂O₃ nanostructures, including nanowires, nanorods, nanoribbons, and nanobelts [1–5], using techniques such as carbothermal reduction [6], physical evaporation [7–10], microwave plasma reaction methods [4, 5], metalorganic chemical vapor deposition [11], and sol–gel methods [12]. However, most of these techniques require complicated equipment, extreme experimental conditions, or high cost.

We designed a simple, cost-effective, and convenient method to overcome these limitations. Ni-ion-catalyzed chemical vapor deposition (CVD) was used to synthesize β -Ga₂O₃ nanorods using CaF₂ as a dispersant. The composition, crystal structure, morphology, and photoluminescence (PL) property of the regular-shaped β -Ga₂O₃ nanorods with square cross-sections were analyzed in detail. In addition, the growth mechanism of the β -Ga₂O₃ nanorods was determined, which was consistent with the vapor–solid (VS) growth mechanism.

2 Experiment details

In our experiment, regular-shaped β -Ga₂O₃ nanorods with square cross-sections were grown in a hot-wall CVD apparatus using metallic Ga and an oxygen source. The raw materials used and their purities were as follows: metallic

Ga (99.99 %), NiCl₂•6H₂O crystal (99.9 %), CaF₂ (99.5 %), O₂ (99.999 %), and N₂ (99.999 %). The process was divided into three steps. The first step was the formation of NiCl₂-coated Si (111) substrates by dipping the substrates into 2 % NiCl₂ ethanol solution for 1 h and milling the Ga/CaF₂ mixture powders for 30 min in agate mortar at room temperature with a weight ratio of 1:2. The second step was the placement of the as-deposited substrates in the quartz boat approximately 10 mm away from the Ga/CaF_2 mixture powders (1.5 g). The last step involved the positioning of the quartz boat at the flattemperature zone of the quartz tube furnace after increasing the furnace temperature to 1,050 °C and flushing of oxygen and moisture by N_2 . Then, the furnace was annealed in O_2 atmosphere at a constant rate of 200 sccm for 30 min. The flowing N₂ gas was introduced into the quartz tube to flush out the residual O₂ for 10 min. Finally, the samples were obtained for characterization.

The composition, crystal structure, surface morphology, and light-emitting property of the samples were characterized using X-ray diffraction (XRD, Rigaku D/max-rB Cu K α), Fourier transform infrared spectrophotometry (FTIR) with an Mg X-ray source (Bruker VERTEX-70), scanning electron microscopy (SEM, Hitachi S-570), highresolution transmission electron microscopy (HRTEM, Hitachi 9000), and PL spectrophotometry (F-4500 fluorescence spectrophotometer).

3 Results and discussion

Figure 1 shows the XRD pattern of Ga2O3 nanorods annealed at 1,050 °C for 30 min, which was indexed to the monoclinic β -Ga2O3 (JCPDS:41-1103). Eight diffraction

Fig. 1 XRD pattern of the sample

Fig. 2 FTIR spectra of the sample

Fig. 3 SEM image of the sample

peaks were located at $2\theta = 30.32^{\circ}$, 31.92° , 33.76° , 35.52° , 37.84° , 38.8° , 61.2° , and 65.04° , which corresponded to the (400), (002), (-111), (111), (401), (-311), (020), and (-712) planes, respectively. Strong diffraction peaks located at 28.72° were correlated with the Si (111) substrate. No diffraction peak was observed for impurities, which indicates that the product on the substrate was a single β -Ga₂O₃ phase with high purity.

FTIR was conducted to characterize the composition of the sample, as shown in Fig. 2. In the FTIR spectra, five well-defined prominent absorption bands located at 459, 617, 683, 1,088, and 1,236 cm⁻¹ were observed. The strong bands at 459 and 683 cm⁻¹ were due to Ga–O vibrations, and corresponded to the contraction vibrations of the octahedron GaO₆ and regular tetrahedron GaO₄, respectively, which were identical to that of bulk β -Ga₂O₃

Fig. 5 Room-temperature PL spectra of β-Ga₂O₃ nanorods

[13]. The band centered at 617 cm^{-1} results from the local vibration of the substituted carbon in the Si crystal lattice [14]. The strong bands at 1,088 and 1,236 cm⁻¹, which correlated with the Si substrate, were due to the Si–O–Si asymmetric stretching vibration. The bands at 617, 1,088, and 1,236 cm⁻¹ are related to the Si substrate [15, 16].

Fig. 3 shows the SEM image of the β -Ga2O3 nanorods annealed at 1,050 °C for 30 min. β -Ga2O3 nanorods were homogeneously distributed on the entire substrate surface with regular morphology, i.e., the surface of the nanorods were smooth and the boundaries were clear. Most of the nanorods were 250 nm in diameter and 500 to 1,000 nm in length. The cross-sections of the nanorods were squareshaped.

Fig. 4a shows that a typical individual nanorod was straight, had a smooth surface, a diameter of 250 nm, and an approximate length of 0.5 to 1.0 μ m, which were consistent with Fig. 3. The Ga₂O₃ nanorod exhibited a solid rather than a hollow tubular structure. Figure 4b shows the HRTEM lattice image of the straight β -Ga₂O₃ nanorod. The spaced lattice fringe in the image indicates that the

 β -Ga₂O₃ nanorod was completely crystallized. The crystal plane spacing of the nanorod was approximately 0.2532 nm, which corresponded to the (111) crystal plane spacing of the monoclinic β -Ga₂O₃. The axis of the nanorod is shown in Fig. 5b. The SAED image (Fig. 4c) shows that the β -Ga₂O₃ sample was a single crystal, which was similar to the XRD results.

Figure 5 shows the room-temperature PL spectra of β-Ga₂O₃ nanorods excited at 250 nm. A broad and strong emission band that ranged from 300 nm to 650 nm was observed, and three bands were centered at approximately 405 (blue), 467 (dark blue), and 520 nm (green). This result indicates the existence of blue and green emissions. Excited nanorods emitted greater energy because of the larger surface area. Thus, the emission band had strong intensity with broad range. The green and blue emission peaks were attributed to the recombination of an electron on a donor because of the oxygen vacancy (V_O) and a hole on an acceptor because of gallium vacancy (VGa) or the gallium-oxygen vacancy pair $(V_{Ga}-V_O)$ [17, 18]. Therefore [18, 19], the blue emission peak (405 nm) excited with the photon energy slightly below the band gap of β -Ga₂O₃ was considered as the recombination of the donor band (V_0) close to the valence band, and the acceptor band consisted of the gallium-oxygen vacancy pair (V_{Ga}-V_O). The blue and green emission peaks centered at 467 and 520 nm by Gaussian fitting were attributed to the recombination of an electron and hole that originated from donors because of oxygen vacancies (V_O) and acceptors because of gallium vacancy (V_{Ga}) or gallium-oxygen vacancy pairs (V_{Ga} - V_{O}) [19, 20]. These donor-acceptor pairs can form trapped excitons, which result in blue-green emission, according to the following process: $(V_O, V_{Ga})^{\times} + V_O^{\times} \rightarrow (V_O, V_{Ga})' +$ $V_{O}^{\cdot} + hv$ [20].

The formation mechanism of the β -Ga₂O₃ nanorods can be explained by the VS growth mechanism. Ni²⁺ ions have an important function during β -Ga₂O₃ crystal growth, and are catalysts for Ga₂O₃ embryos. An increase in Ni²⁺ ions can change the energy distribution on the substrate surface. i.e., a large quantity of defect energies can be found with more broken bonds clustered on the sites where Ni^{2+} ions are distributed [21]. CaF₂, an important dispersant, increased the vaporization of metallic Ga at 1,050 °C during the reaction process, and facilitated the formation of β -Ga₂O₃ nanorods. Metallic Ga melted into small droplets, which were transported into the Ni²⁺-ion-coated-substrate. Dissociative gaseous-state Ga and O atoms were absorbed by the broken bonds of the Ni²⁺ ions, and these atoms formed nucleation points. Free Ga and O atoms continued to spread and grow along the preferred orientation, which resulted in the formation of β -Ga₂O₃ nanorods. Ni²⁺ had an important function as a catalyst during the formation of β -Ga₂O₃ nanorods. CaF₂, an important dispersant, increased the vaporization of metallic Ga at 1,050 °C and facilitated the formation of β -Ga₂O₃ nanorods.

4 Conclusion

The regular-shaped β -Ga₂O₃ nanorods with square crosssections were successfully obtained through a simple, costeffective, and convenient catalyzed CVD method using CaF₂ as a dispersant and Ni²⁺ ions as catalysts. The composition, crystal structure, morphology, and PL property of the β -Ga₂O₃ nanorods were analyzed in detail. XRD showed that the sample was a single monoclinic β -Ga₂O₃ phase with high purity. The regular-shaped nanorods had square cross-sections and an approximate size of 250 nm in diameter and 500-1,000 nm in length. A broad and strong emission band ranging from 300 to 650 nm, which was attributed to a larger surface area of nanorods, was observed with three bands at approximately 405 (blue), 467 (dark blue), and 520 nm (green). Finally, the growth mechanism of the β -Ga₂O₃ nanorods was determined, which was consistent with the VS growth mechanism.

Acknowledgments This work was supported by the National Key Basic Research Development Program of China (Grant No.: 2012 CB722705), the Natural Science Foundation for Outstanding Young Scientists in Shandong Province, China (Grant No.: JQ201002), the

National Natural Science Foundation of China (Grant No.: 61205174), and the Shandong Excellent Young Scientist Research Award Fund (Grant No.: BS2012CL034). Y. Q. Wang would like to thank the Taishan Outstanding Overseas Scholar Program of Shandong Province, China for financial support.

References

- 1. B. Das, S. Acharya, J Nanosci Nanotechnol 12, 6258 (2012)
- L.D. Tang, B. Wang, H.L. Du, J.Z. Wang, J Nanosci Nanotechnol 12, 6385 (2012)
- Y. Jang, J. Park, Y. Kim Pak, J. Jungho Pak, J Nanosci Nanotechnol 12, 5173 (2012)
- L.G. Gai, H.H. Jiang, Y. Tian, D.L. Cui, Q.L. Wang, Nanotechnology 17, 5858–5861 (2006)
- D.G. Yin, B.H. Liu, L. Zhang, M.H. Wu, J Biomed Nanotechnol 8, 458 (2012)
- L.D. Tang, B. Wang, H.L. Du, J.Z. Wang, J Nanosci Nanotechnol 12, 6385 (2012)
- A. Babu, K. Jeyasubramanian, P. Gunasekaran, R. Murugesan, J Biomed Nanotechnol 8, 43 (2012)
- F.P. Navarro, M. Berger, S. Guillermet, V. Josserand, L. Guyon, E. Neumann, F. Vinet, I. Texier, J Biomed Nanotechnol 8, 730 (2012)
- Y. Nam, J. Park, Y.K. Pak, J.J. Pak, J Nanosci Nanotechnol 12, 5547 (2012)
- T. Xiong, Y.J. Li, F.G. Ni, F. Zhang, J Biomed Nanotechnol 8, 74 (2012)
- C.H. Liang, G.W. Meng, G.Z. Wang, Y.W. Wang, L.D. Zhang, Appl Phys Lett **78**, 3202 (2001)
- R. Jalilian, M.M. Yazdanpanah, B.K. Pradhan, G.U. Sumanasekera, Chem Phys Lett 426, 393 (2006)
- H.D. Xiao, H.Y. Pei, W.R. Hu, B. Bo, Y.B. Qiu, Mater Lett 64, 2399 (2010)
- 14. J.Q. Hu, Q. Li, X.M. Meng, C.S. Lee, S.T. Lee, J Phys Chem B106, 9536 (2002)
- X.C. Wu, W.H. Song, W.D. Huang, M.H. Pu, B. Zhao, Y.P. Sun, J.J. Du, Chem Phys Lett **328**, 5 (2000)
- 16. Y. Sun, T. Miyasato, J Appl Phys 84, 6451 (1998)
- 17. K.W. Chang, J.J. Wu, Adv Mater 16, 545 (2004)
- L.C. Tien, W.T. Chen, C.H. Ho, J Am Ceram Soc 94, 3117 (2011)
- Y.J. Zhang, J.L. Yan, Q.S. Li, C.Q.L.Y. Zhang, W.F. Xie, Mater Sci Eng B176, 846 (2011)
- P.C. Chang, Z.Y. Fan, W.Y. Tseng, A. Rajagopal, J.G. Lu, Appl Phys Lett 87, 222102 (2005)
- 21. F. Shi, X.W. Feng, J Nanosci Nanotechnol **12**(11), 8481–8486 (2012)